login
Convolution of Lucas numbers and (F(2), F(3), F(4), ...).
2

%I #24 May 25 2018 17:39:06

%S 1,5,13,29,60,118,225,419,767,1385,2474,4380,7697,13441,23345,40357,

%T 69480,119186,203793,347455,590851,1002385,1696918,2867064,4835425,

%U 8141693,13687765,22979309,38527572,64517230,107915649,180314075,300981767,501929081

%N Convolution of Lucas numbers and (F(2), F(3), F(4), ...).

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,-2,-1).

%F G.f.: x*(1+3*x+2*x^2)/(1-x-x^2)^2. - _Ralf Stephan_, Apr 28 2004

%F a(n) = (n+1)*Sum_{k=1..n+1} binomial(k,n+1-k)*(k-1)/k. - _Vladimir Kruchinin_, Sep 26 2011

%F a(n) = 2*A001629(n-1) + 3*A001629(n) + A001629(n+1). - _R. J. Mathar_, Oct 17 2011

%F a(n) = (n-1)*A000045(n) + n*A000045(n+1). - _Michael Schirle_, May 17 2018

%K nonn

%O 1,2

%A _Clark Kimberling_