login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of n-th Lucas number greater than 3 and n-th number that is 1 or is not a Fibonacci number.
0

%I #24 Mar 23 2019 02:39:31

%S 5,11,17,25,38,57,87,135,213,337,537,860,1382,2226,3591,5800,9372,

%T 15151,24501,39629,64106,103710,167790,271473,439235,710679,1149884,

%U 1860533,3010385,4870884,7881234,12752082,20633279,33385323,54018563,87403846,141422368

%N Sum of n-th Lucas number greater than 3 and n-th number that is 1 or is not a Fibonacci number.

%F a(n) = phi^(n+2) + n + log_phi(n) + O(1), where phi = 1/2 + sqrt(5)/2 is the golden ratio. - _Charles R Greathouse IV_, Jan 17 2012

%F a(n) = A000032(n+2) + A001690(n-1), n >= 2. - _R. J. Mathar_, Feb 01 2019

%t nMax = 50; With[{luke = LucasL[Range[3, nMax + 2]], dn = Take[Join[{1}, Complement[Range[2nMax], Fibonacci[Range[2nMax]]]], nMax]}, Total /@ Thread[{luke, nMax}]] (* _Harvey P. Dale_, Jan 17 2012 *)

%o (PARI) b(n)=fibonacci(n+1)+fibonacci(n+3)

%o d(n)=my(k=2);n-=3;while(fibonacci(k++)<=n+k,);n+k

%o a(n)=b(n)+d(n) \\ _Charles R Greathouse IV_, Jan 17 2012

%K nonn

%O 1,1

%A _Clark Kimberling_

%E a(28)-a(37) corrected by _Harvey P. Dale_, Jan 17 2012