login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Generalized Catalan Numbers.
1

%I #16 Jul 20 2021 19:00:07

%S 1,1,1,1,1,1,2,4,7,11,17,27,45,77,132,224,378,640,1093,1881,3250,5622,

%T 9732,16874,29332,51126,89313,156283,273842,480474,844220,1485472,

%U 2617335,4617243,8154289,14415869,25511256,45190366,80124434,142189496

%N Generalized Catalan Numbers.

%F a(0)=1; a(n) = a(n-1) + Sum_{k=2..n-4} a(k)*a(n-4-k).

%F G.f. A(x) satisfies: A(x) = (1 + x^4 * A(x)^2) / (1 - x + x^4 + x^5). - _Ilya Gutkovskiy_, Jul 20 2021

%p A023428 := proc(n)

%p option remember;

%p if n = 0 then

%p 1 ;

%p else

%p procname(n-1)+add(procname(k)*procname(n-4-k),k=2..n-4) ;

%p end if;

%p end proc:

%p seq(A023428(n),n=0..80) ; # _R. J. Mathar_, Oct 31 2014

%t Clear[ a ]; a[ 0 ]=1; a[ n_Integer ] := a[ n ]=a[ n-1 ]+Sum[ a[ k ]*a[ n-4-k ], {k, 2, n-4} ];

%Y Cf. A000108, A001006, A004148, A006318.

%K nonn,easy

%O 0,7

%A _Olivier Gérard_

%E More terms from _Sean A. Irvine_, Jun 04 2019