Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #50 Jul 13 2024 04:45:53
%S 1,1,1,1,2,4,7,11,18,32,59,107,191,343,627,1159,2146,3972,7373,13757,
%T 25781,48437,91165,171945,325096,616066,1169667,2224355,4236728,
%U 8082374,15441719,29542411,56590472,108532322,208387711,400551615,770710831,1484383399
%N a(n) = a(n-1) + Sum_{k=0..n-4} a(k)*a(n-4-k), a(0) = 1. Generalized Catalan Numbers.
%C Number of lattice paths from (0,0) to (n,0) that stay weakly in the first quadrant and such that each step is either U=(2,1),D=(2,-1), or H=(1,0). E.g. a(5)=4 because we have HHHHH, HUD, UDH and UHD. - _Emeric Deutsch_, Dec 23 2003
%C Hankel transform is A132380(n+3). - _Paul Barry_, May 22 2009
%H Vincenzo Librandi, <a href="/A023426/b023426.txt">Table of n, a(n) for n = 0..1000</a>
%H Andrei Asinowski, Cyril Banderier and Valerie Roitner, <a href="https://lipn.univ-paris13.fr/~banderier/Papers/several_patterns.pdf">Generating functions for lattice paths with several forbidden patterns</a>, (2019).
%H Ricardo Gómez Aíza, <a href="https://arxiv.org/abs/2402.16111">Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis</a>, arXiv:2402.16111 [math.CO], 2024. See pp. 10, 19-21.
%H K. Park and G.S. Cheon, <a href="http://www.kms.or.kr/conference/abstract/search_view.html?num=5098&uid=32">Lattice path counting with a bounded strip restriction</a>
%F G.f.: [1-z-sqrt((1-z)^2-4z^4)]/[2z^4]. - _Emeric Deutsch_, Dec 23 2003
%F From _Paul Barry_, May 22 2009: (Start)
%F G.f.: 1/(1-x-x^4/(1-x-x^4/(1-x-x^4/(1-x-x^4/(1-... (continued fraction).
%F G.f.: (1/(1-x))c(x^4/(1-x)^2), c(x) the g.f. of A000108.
%F a(n) = Sum_{k=0..floor(n/4)} C(n-2k,2k)*A000108(k). (End)
%F D-finite with recurrence (n+4)*a(n) +(n+4)*a(n-1) -(5*n+8)*a(n-2) +3*n*a(n-3) +4*(2-n)*a(n-4) +12*(3-n)*a(n-5)=0. - _R. J. Mathar_, Sep 29 2012
%F a(n) ~ sqrt(3) * 2^(n+3/2) / (sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Feb 01 2014
%F G.f. A(x) satisfies: A(x) = (1 + x^4 * A(x)^2) / (1 - x). - _Ilya Gutkovskiy_, Jul 20 2021
%F a(n) = hypergeom([(1 - n)/4, (2 - n)/4, (3 - n)/4, -n/4], [2, (1 - n)/2, -n/2], 64). - _Peter Luschny_, Jul 12 2024
%p a := n -> hypergeom([(1 - n)/4, (2 - n)/4, (3 - n)/4, -n/4], [2, (1 - n)/2, -n/2], 2^6): seq(simplify(a(n)), n = 0..35); # _Peter Luschny_, Jul 12 2024
%t Clear[ a ]; a[ 0 ]=1; a[ n_Integer ] := a[ n ]=a[ n-1 ]+Sum[ a[ k ]*a[ n-4-k ], {k, 0, n-4} ];
%t CoefficientList[Series[(1-x-Sqrt[(1-x)^2-4*x^4])/(2*x^4), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Feb 01 2014 *)
%Y Cf. A000108, A001006, A004148, A006318.
%K nonn,easy
%O 0,5
%A _Olivier Gérard_
%E Name extended by a formula from the author in Mathematica by _Peter Luschny_, Jul 13 2024