Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 May 18 2024 14:58:00
%S 1,1,1,3,4,4,14,13,16,48,55,50,173,148,147,665,580,559,1920,1447,1975,
%T 6240,4228,5689,15764,17562,14332,46207,39071,35317,172311,134752,
%U 110758,381384,299971,479935,1154568,733900,1027967,2581763,2636545,2333308
%N Conjecturally, number of infinitely recurring prime patterns of width 2n-1.
%C Of the patterns counted by A023192, the number of those that start and end with a prime. - _Sean A. Irvine_, May 27 2019
%e From _Jon E. Schoenfield_, May 17 2024: (Start)
%e The table below lists every (conjecturally) infinitely recurring prime pattern of width 2n-1 for n = 1..7. Each p represents a prime; each c represents a composite.
%e .
%e n 2n-1 a(n) prime patterns
%e - ---- ---- --------------------------------------------------
%e 1 1 1 p
%e 2 3 1 pcp
%e 3 5 1 pcccp
%e 4 7 3 pcccccp, pcpcccp, pcccpcp
%e 5 9 4 pcccccccp, pcpcccccp, pcccccpcp, pcpcccpcp
%e 6 11 4 pcccccccccp, pcccpcccccp, pcccccpcccp, pcccpcpcccp
%e 7 13 14 pcccccccccccp, pcpcccccccccp, pcccpcccccccp,
%e pcccccpcccccp, pcccccccpcccp, pcccccccccpcp,
%e pcpcccpcccccp, pcpcccccpcccp, pcccpcpcccccp,
%e pcccpcccccpcp, pcccccpcpcccp, pcccccpcccpcp,
%e pcpcccpcpcccp, pcccpcpcccpcp
%e (End)
%Y Cf. A023190, A023191, A023192.
%K nonn,more
%O 1,4
%A _David W. Wilson_
%E Name edited by _Jon E. Schoenfield_, May 17 2024