login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of cycles of function f(x) = 9x mod n.
7

%I #27 Apr 10 2024 03:30:35

%S 1,2,1,4,3,2,3,8,1,6,3,4,5,6,3,12,3,2,3,12,3,6,3,8,5,10,1,12,3,6,3,16,

%T 3,6,9,4,5,6,5,24,11,6,3,12,3,6,3,12,5,10,3,20,3,2,9,24,3,6,3,12,13,6,

%U 3,20,15,6,7,12,3,18,3,8,13,10,5,12,9,10,3,44,1,22,3,12,13,6,3,24,3,6,31,12,3

%N Number of cycles of function f(x) = 9x mod n.

%H T. D. Noe, <a href="/A023141/b023141.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = Sum_{d|m} phi(d)/ord(9, d), where m is n with all factors of 3 removed. - _T. D. Noe_, Apr 21 2003

%F a(n) = (1/ord(9,m))*Sum_{j = 0..ord(9,m)-1} gcd(9^j - 1, m), where m is n with all factors of 3 removed. - _Nihar Prakash Gargava_, Nov 14 2018

%e a(12) = 4 because the function 9x mod 12 has the four cycles (0),(3),(1,9),(2,6).

%t CountFactors[p_, n_] := Module[{sum=0, m=n, d, f, i, ps, j}, ps=Transpose[FactorInteger[p]][[1]]; Do[While[Mod[m, ps[[j]]]==0, m/=ps[[j]]], {j, Length[ps]}]; d=Divisors[m]; Do[f=d[[i]]; sum+=EulerPhi[f]/MultiplicativeOrder[p, f], {i, Length[d]}]; sum]; Table[CountFactors[9, n], {n, 100}]

%o (Python)

%o from sympy import totient, n_order, divisors

%o def A023141(n):

%o a, b = divmod(n,3)

%o while not b:

%o n = a

%o a, b = divmod(n,3)

%o return sum(totient(d)//n_order(9,d) for d in divisors(n,generator=True) if d>1)+1 # _Chai Wah Wu_, Apr 09 2024

%Y Cf. A000374.

%Y Cf. A023135, A023136, A023137, A023138, A023139, A023140, A023142.

%K nonn

%O 1,2

%A _David W. Wilson_