Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #60 May 27 2024 12:26:46
%S 0,1,1025,60074,1108650,10874275,71340451,353815700,1427557524,
%T 4914341925,14914341925,40851766526,102769130750,240627622599,
%U 529882277575,1106532668200,2206044295976,4222038196425,7792505423049,13923571680850
%N Sum of 10th powers.
%H T. D. Noe, <a href="/A023002/b023002.txt">Table of n, a(n) for n = 0..1000</a>
%H Bruno Berselli, A description of the recursive method in Formula lines (second formula): website <a href="http://www.lanostra-matematica.org/2008/12/sequenze-numeriche-e-procedimenti.html">Matem@ticamente</a> (in Italian).
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PowerSum.html">Power Sum</a>.
%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
%F a(n) = n*(n+1)*(2*n+1)*(n^2+n-1)(3*n^6 +9*n^5 +2*n^4 -11*n^3 +3*n^2 +10*n -5)/66 (see MathWorld, Power Sum, formula 40). - _Bruno Berselli_, Apr 26 2010
%F a(n) = n*A007487(n) - Sum_{i=0..n-1} A007487(i). - _Bruno Berselli_, Apr 27 2010
%F From _Bruno Berselli_, Aug 23 2011: (Start)
%F a(n) = -a(-n-1).
%F G.f.: x*(1+x)*(1 +1012*x +46828*x^2 +408364*x^3 +901990*x^4 +408364*x^5 +46828*x^6 +1012*x^7 +x^8)/(1-x)^12. (End)
%F a(n) = (-1)*Sum_{j=1..10} j*Stirling1(n+1,n+1-j)*Stirling2(n+10-j,n). - _Mircea Merca_, Jan 25 2014
%p A023002:= n-> bernoulli(11, n+1)/11; seq(A023002(n), n=0..30); # _G. C. Greubel_, Jul 21 2021
%t Table[Sum[k^10, {k, n}], {n, 0, 30}] (* _Vladimir Joseph Stephan Orlovsky_, Aug 14 2008 *)
%t Accumulate[Range[0,20]^10] (* _Harvey P. Dale_, Aug 23 2011 *)
%o (Sage) [bernoulli_polynomial(n,11)/11 for n in range(2, 21)]# _Zerinvary Lajos_, May 17 2009
%o (Magma) [&+[n^10: n in [0..m]]: m in [0..19]]; // _Bruno Berselli_, Aug 23 2011
%o (PARI) a(n)=(6*x^11+33*x^10+55*x^9-66*x^7+66*x^5-33*x^3+5*x)/66 \\ _Charles R Greathouse IV_, Aug 23 2011
%o (PARI) a(n)=sum(i=0,10,binomial(11,i)*bernfrac(i)*n^(11-i))/11+n^10 \\ _Charles R Greathouse IV_, Aug 23 2011
%o (Python)
%o A023002_list, m = [0], [3628800, -16329600, 30240000, -29635200, 16435440, -5103000, 818520, -55980, 1022, -1, 0 , 0]
%o for _ in range(20):
%o for i in range(11):
%o m[i+1]+= m[i]
%o A023002_list.append(m[-1])
%o print(A023002_list) # _Chai Wah Wu_, Nov 05 2014
%Y Sequences of the form Sum_{j=0..n} j^m : A000217 (m=1), A000330 (m=2), A000537 (m=3), A000538 (m=4), A000539 (m=5), A000540 (m=6), A000541 (m=7), A000542 (m=8), A007487 (m=9), this sequence (m=10), A123095 (m=11), A123094 (m=12), A181134 (m=13).
%Y Row 10 of array A103438.
%Y Cf. A215083.
%K nonn,easy
%O 0,3
%A _David W. Wilson_