OFFSET
1,2
COMMENTS
From Clark Kimberling, Oct 30 2017: (Start)
The complementary sequences a() and b() are uniquely determined by the titular equation and initial values. The initial values of each sequence in the following guide are a(0) = 1, a(2) = 3, b(0) = 2, b(1) = 4:
here: a(n) = a(n-1) + b(n-2) [with a different offset]
A294397: a(n) = a(n-1) + b(n-2) + 1;
A294398: a(n) = a(n-1) + b(n-2) + 2;
A294399: a(n) = a(n-1) + b(n-2) + 3;
A294400: a(n) = a(n-1) + b(n-2) + n;
A294401: a(n) = a(n-1) + b(n-2) + 2*n.
(End)
LINKS
Ivan Neretin, Table of n, a(n) for n = 1..10000
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
EXAMPLE
a(1) = 1, a(2) = 3, b(1) = 2, b(2) = 4, so that a(3) = a(2) + a(1) + b(2) = 5.
Complement: {b(n)} = {2, 4, 6, 7, 8, 10, 11, 12, 13, 14, 16, ...}
MATHEMATICA
Fold[Append[#1, #1[[-1]] + Complement[Range[Max@#1 + 1], #1][[#2]]] &, {1, 3}, Range[50]] (* Ivan Neretin, Apr 04 2016 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved