login
Multinomial coefficients(TOP, BOTTOM), where TOP = 2^n, BOTTOM = ( C(n,0) C(n,1) C(n,2) ... C(n,n) ).
2

%I #13 Nov 24 2023 15:58:53

%S 1,2,12,1120,50450400,1387660381886338560,

%T 58833957894412548628347941194431580569600,

%U 54468560860672704568758301042326371229883670125439070950586847311164532855256159027200000

%N Multinomial coefficients(TOP, BOTTOM), where TOP = 2^n, BOTTOM = ( C(n,0) C(n,1) C(n,2) ... C(n,n) ).

%H Alois P. Heinz, <a href="/A022914/b022914.txt">Table of n, a(n) for n = 0..10</a>

%p with(combinat):

%p a:= n-> multinomial(2^n, seq(binomial(n, i), i=0..n)):

%p seq(a(n), n=0..8); # _Alois P. Heinz_, Sep 24 2013

%t Table[(2^n)!/Product[Binomial[n, k]!, {k, 0, n}], {n, 0, 8}] (* _Vaclav Kotesovec_, Nov 24 2023 *)

%Y Cf. A051459.

%K nonn

%O 0,2

%A _Clark Kimberling_

%E More terms from _James A. Sellers_, May 02 2000