Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Oct 21 2022 21:56:14
%S 1,11,44,121,271,532,952,1590,2517,3817,5588,7943,11011,14938,19888,
%T 26044,33609,42807,53884,67109,82775,101200,122728,147730,176605,
%U 209781,247716,290899,339851,395126,457312,527032,604945,691747
%N Number of terms in 6th derivative of a function composed with itself n times.
%D W. C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.
%H Vincenzo Librandi, <a href="/A022816/b022816.txt">Table of n, a(n) for n = 1..10000</a>
%H W. C. Yang, <a href="http://dx.doi.org/10.1016/S0012-365X(99)00412-4">Derivatives are essentially integer partitions</a>, Discrete Mathematics, 222(1-3), July 2000, 235-245.
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6, -15, 20, -15, 6, -1).
%F a(n) = n*(n+1)*(n^3+24*n^2+81*n-46)/120. G.f.: x*(1+5*x-7*x^2+2*x^3)/(x-1)^6. - _R. J. Mathar_, Sep 15 2009
%t Table[n(n+1)(n^3+24n^2+81n-46)/120,{n,40}] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{1,11,44,121,271,532},40] (* _Harvey P. Dale_, Dec 29 2017 *)
%o (Magma) [n*(n+1)*(n^3+24*n^2+81*n-46)/120: n in [1..40]]; // _Vincenzo Librandi_, Oct 10 2011
%o (PARI) a(n)=n*(n+1)*(n^3+24*n^2+81*n-46)/120 \\ _Charles R Greathouse IV_, Oct 21 2022
%Y Cf. A008778, A022811-A022818, A024207-A024210.
%K nonn,easy
%O 1,2
%A _N. J. A. Sloane_.
%E More terms from _Christian G. Bower_, Aug 15 1999.