Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Sep 08 2022 08:44:46
%S 1,7,23,55,110,196,322,498,735,1045,1441,1937,2548,3290,4180,5236,
%T 6477,7923,9595,11515,13706,16192,18998,22150,25675,29601,33957,38773,
%U 44080,49910,56296,63272,70873,79135,88095,97791,108262,119548,131690
%N Number of terms in 5th derivative of a function composed with itself n times.
%D W. C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.
%H Vincenzo Librandi, <a href="/A022815/b022815.txt">Table of n, a(n) for n = 1..10000</a>
%H W. C. Yang, <a href="http://dx.doi.org/10.1016/S0012-365X(99)00412-4">Derivatives are essentially integer partitions</a>, Discrete Mathematics, 222(1-3), July 2000, 235-245.
%F a(n) = n*(n+1)*(n^2+13*n-2)/24. - _John W. Layman_, Apr 27 2000
%F G.f.: x*(1-2*x^2+2*x)/(1-x)^5. [Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009]
%F a(n) = n*A000217(n) + sum((n-i)*A000217(i), i=0..n-1). [_Bruno Berselli_, Jun 23 2013]
%e a(7) = 7*28 + (7*0+6*1+5*3+4*6+3*10+2*15+1*21) = 322. [_Bruno Berselli_, Jun 22 2013]
%o (Magma) [n*(n+1)*(n^2+13*n-2)/24: n in [1..40]]; // _Vincenzo Librandi_, Oct 10 2011
%Y Cf. A008778, A022811-A022818, A024207-A024210.
%K nonn,easy
%O 1,2
%A _N. J. A. Sloane_.
%E G.f. proposed by Maksym Voznyy checked and corrected by _R. J. Mathar_, Sep 16 2009.
%E More terms from _Christian G. Bower_, Aug 15 1999.