login
Expansion of 1/Product_{m>=1} (1 - m*q^m)^27.
2

%I #13 Aug 17 2023 08:15:02

%S 1,27,432,5193,51624,446094,3454767,24472584,160883037,992189253,

%T 5788156617,32151489435,170956128834,873959259258,4311311541669,

%U 20586621297483,95404964600448,430094901683700

%N Expansion of 1/Product_{m>=1} (1 - m*q^m)^27.

%C This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 27, g(n) = n. - _Seiichi Manyama_, Aug 17 2023

%H Seiichi Manyama, <a href="/A022751/b022751.txt">Table of n, a(n) for n = 0..5000</a>

%F a(0) = 1; a(n) = (27/n) * Sum_{k=1..n} A078308(k) * a(n-k). - _Seiichi Manyama_, Aug 17 2023

%Y Column k=27 of A297328.

%Y Cf. A078308.

%K nonn

%O 0,2

%A _N. J. A. Sloane_