%I #12 Aug 16 2023 08:12:10
%S 1,21,273,2716,22659,165984,1098615,6695559,38085117,204218630,
%T 1040291595,5064987207,23686610269,106828575357,466231753944,
%U 1974651627802,8136148603086,32681975601387,128221943065839
%N Expansion of 1/Product_{m>=1} (1 - m*q^m)^21.
%C This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 21, g(n) = n. - _Seiichi Manyama_, Aug 16 2023
%H Seiichi Manyama, <a href="/A022745/b022745.txt">Table of n, a(n) for n = 0..5000</a>
%F a(0) = 1; a(n) = (21/n) * Sum_{k=1..n} A078308(k) * a(n-k). - _Seiichi Manyama_, Aug 16 2023
%Y Column k=21 of A297328.
%Y Cf. A078308.
%K nonn
%O 0,2
%A _N. J. A. Sloane_