%I #12 Sep 08 2022 08:44:46
%S 1,6,33,146,594,2196,7687,25410,80664,246258,728610,2093334,5865853,
%T 16057998,43063812,113293158,292928448,745216692,1867840830,
%U 4616732712,11264133069,27149243724,64691795178
%N Expansion of Product_{m>=1} 1/(1 - m*q^m)^6.
%H G. C. Greubel, <a href="/A022730/b022730.txt">Table of n, a(n) for n = 0..1000</a>
%F G.f.: exp(6*Sum_{j>=1} Sum_{k>=1} k^j*x^(j*k)/j). - _Ilya Gutkovskiy_, Feb 07 2018
%t With[{nmax = 50}, CoefficientList[Series[Product[(1 - k*q^k)^-6, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Jul 25 2018 *)
%o (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1-n*q^n)^-6)) \\ _G. C. Greubel_, Jul 25 2018
%o (Magma) n:=50; R<x>:=PowerSeriesRing(Integers(), n); Coefficients(R!(&*[(1/(1-m*x^m))^6:m in [1..n]])); // _G. C. Greubel_, Jul 25 2018
%Y Column k=6 of A297328.
%K nonn
%O 0,2
%A _N. J. A. Sloane_