Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Sep 08 2022 08:44:46
%S 1,2,7,18,49,114,282,624,1422,3058,6597,13700,28564,57698,116479,
%T 230398,453698,879080,1696732,3230578,6124326,11486884,21439480,
%U 39659598,73036175,133445640,242756058,438680734,789328034,1411926186,2515574329,4458203590,7871211452,13831782146
%N Expansion of 1/Product_{m>=1} (1 - m*q^m)^2.
%C Self-convolution of A006906. - _Vaclav Kotesovec_, Jan 06 2016
%H Vaclav Kotesovec, <a href="/A022726/b022726.txt">Table of n, a(n) for n = 0..6000</a>
%F From _Vaclav Kotesovec_, Jan 07 2016: (Start)
%F a(n) ~ c * n * 3^(n/3), where
%F c = 9588921272.54120308291761424720457... = (c0^2 + 2*c1*c2)/3 if mod(n,3)=0
%F c = 9588921272.50566179874517327053929... = (c2^2 + 2*c0*c1)/3 if mod(n,3)=1
%F c = 9588921272.49785814355801212400055... = (c1^2 + 2*c0*c2)/3 if mod(n,3)=2
%F For the constants c0, c1, c2 see A006906.
%F (End)
%F G.f.: exp(2*Sum_{j>=1} Sum_{k>=1} k^j*x^(j*k)/j). - _Ilya Gutkovskiy_, Feb 07 2018
%t nmax = 40; CoefficientList[Series[Product[1/(1-k*x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jan 06 2016 *)
%o (PARI)
%o N=66; q='q+O('q^N);
%o gf= 1/prod(n=1,N, (1-n*q^n)^2 );
%o Vec(gf)
%o /* _Joerg Arndt_, Oct 06 2012 */
%o (Magma) n:=40; R<x>:=PowerSeriesRing(Integers(), n); Coefficients(R!(&*[(1/(1-m*x^m))^2:m in [1..n]])); // _G. C. Greubel_, Jul 25 2018
%Y Cf. A006906, A022662.
%Y Column k=2 of A297328.
%K nonn
%O 0,2
%A _N. J. A. Sloane_
%E Added more terms, _Joerg Arndt_, Oct 06 2012