login
Expansion of Product_{m>=1} 1/(1 + m*q^m)^8.
2

%I #12 Jul 20 2018 06:03:13

%S 1,-8,20,-16,58,-288,424,-464,2035,-4816,7364,-15008,32030,-69152,

%T 135352,-217840,460537,-1012000,1704176,-3043120,6200086,-11737792,

%U 21029184,-37602016,70312646,-132822480,235883988,-412277440

%N Expansion of Product_{m>=1} 1/(1 + m*q^m)^8.

%H G. C. Greubel, <a href="/A022700/b022700.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: exp(-8*Sum_{j>=1} Sum_{k>=1} (-1)^(j+1)*k^j*x^(j*k)/j). - _Ilya Gutkovskiy_, Feb 08 2018

%t With[{nmax = 50}, CoefficientList[Series[Product[(1 + k*q^k)^-8, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Jul 19 2018 *)

%o (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+n*q^n)^-8)) \\ _G. C. Greubel_, Jul 19 2018

%Y Column k=8 of A297325.

%K sign

%O 0,2

%A _N. J. A. Sloane_