login
Expansion of Product_{m>=1} (1-m*q^m)^32.
2

%I #10 Sep 08 2022 08:44:46

%S 1,-32,432,-3008,9144,15040,-217216,535104,868252,-6262496,3084192,

%T 30773568,-9780096,-186954304,-120143680,1509279360,594179718,

%U -7348077952,-5674293872,21981855936,64543508768

%N Expansion of Product_{m>=1} (1-m*q^m)^32.

%H G. C. Greubel, <a href="/A022692/b022692.txt">Table of n, a(n) for n = 0..1000</a>

%t With[{nmax = 50}, CoefficientList[Series[Product[(1 - k*q^k)^32, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Jul 19 2018 *)

%o (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1-n*q^n)^32)) \\ _G. C. Greubel_, Jul 19 2018

%o (Magma) Coefficients(&*[(1-m*x^m)^32:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Jul 19 2018

%K sign

%O 0,2

%A _N. J. A. Sloane_