login
Expansion of Product_{m >= 1} (1-m*q^m)^12.
2

%I #12 Sep 08 2022 08:44:46

%S 1,-12,42,32,-441,324,1486,552,-5925,-14960,26490,46488,23436,-86940,

%T -454572,-84008,650589,2512344,2002056,-5360256,-9309792,-16236104,

%U 3738294,49969488,106062099,90950460,-166391628,-472579032,-780853359,-269428512,1218718846,4153700664,5179581558

%N Expansion of Product_{m >= 1} (1-m*q^m)^12.

%H G. C. Greubel, <a href="/A022672/b022672.txt">Table of n, a(n) for n = 0..1000</a>

%t With[{nmax = 50}, CoefficientList[Series[Product[(1 - k*q^k)^12, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Feb 24 2018 *)

%o (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1-n*q^n)^12)) \\ _G. C. Greubel_, Feb 24 2018

%o (Magma) Coefficients(&*[(1-m*x^m)^12:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 24 2018

%K sign

%O 0,2

%A _N. J. A. Sloane_

%E Terms a(27) onward added by _G. C. Greubel_, Feb 24 2018