login
Expansion of Product_{m>=1} (1-m*q^m).
18

%I #29 Sep 08 2022 08:44:46

%S 1,-1,-2,-1,-1,5,1,13,4,0,2,-8,-61,-31,13,-156,21,11,223,92,91,426,

%T 972,165,141,-1126,440,1294,-4684,-2755,-5748,-2414,-6679,10511,

%U -10048,-19369,19635,22629,14027,76969,-1990,40193,-10678,75795,215767,-54322,-40882

%N Expansion of Product_{m>=1} (1-m*q^m).

%C Is a(9) the only occurrence of 0 in this sequence? - _Robert Israel_, Jun 02 2015

%H Robert Israel, <a href="/A022661/b022661.txt">Table of n, a(n) for n = 0..10000</a>

%p P:= mul(1-m*q^m,m=1..100):

%p S:= series(P,q,101):

%p seq(coeff(S,q,j),j=0..100); # _Robert Israel_, Jun 02 2015

%p # second Maple program:

%p b:= proc(n, i) option remember; `if`(i*(i+1)/2<n, 0,

%p `if`(n=0, 1, b(n, i-1)-`if`(i>n, 0, i*b(n-i, i-1))))

%p end:

%p a:= n-> b(n$2):

%p seq(a(n), n=0..60); # _Sean A. Irvine_ (after _Alois P. Heinz_), May 19 2019

%t nmax = 40; CoefficientList[Series[Product[1 - k*x^k, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Dec 15 2015 *)

%t nmax = 40; CoefficientList[Series[Exp[-Sum[PolyLog[-j, x^j]/j, {j, 1, nmax}]], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Dec 15 2015 *)

%t (* More efficient program: *) nmax = 50; poly = ConstantArray[0, nmax+1]; poly[[1]] = 1; poly[[2]] = -1; Do[Do[poly[[j+1]] -= k*poly[[j-k+1]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly (* _Vaclav Kotesovec_, Jan 07 2016 *)

%o (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1-n*q^n))) \\ _G. C. Greubel_, Feb 18 2018

%o (Magma) Coefficients(&*[(1-m*x^m):m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 18 2018

%Y Cf. A006906, A022629, A022693, A266964.

%K sign

%O 0,3

%A _N. J. A. Sloane_