login
Expansion of Product_{m>=1} (1+m*q^m)^32.
2

%I #20 Sep 08 2022 08:44:46

%S 1,32,560,7104,72888,640320,4985600,35202496,229089692,1390677728,

%T 7947553824,43070246592,222637403008,1103015334464,5258564956736,

%U 24206137227648,107897964171910,466891402634624,1965526100961552,8065514386997056,32315388450560032

%N Expansion of Product_{m>=1} (1+m*q^m)^32.

%H G. C. Greubel, <a href="/A022660/b022660.txt">Table of n, a(n) for n = 0..1000</a>

%t With[{nmax=50}, CoefficientList[Series[Product[(1+k*q^k)^32, {k,1,nmax}], {q, 0, nmax}],q]] (* _G. C. Greubel_, Feb 24 2018 *)

%o (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+n*q^n)^32)) \\ _G. C. Greubel_, Feb 24 2018

%o (Magma) Coefficients(&*[(1+m*x^m)^32:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 24 2018

%Y Column k=32 of A297321.

%K nonn

%O 0,2

%A _N. J. A. Sloane_

%E Terms a(18) onward added by _G. C. Greubel_, Feb 24 2018