login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{m>=1} (1+x^m)^12.
9

%I #51 Sep 08 2022 08:44:46

%S 1,12,78,376,1509,5316,16966,50088,138738,364284,913824,2203368,

%T 5130999,11585208,25444278,54504160,114133296,234091152,471062830,

%U 931388232,1811754522,3471186596,6556994502,12222818640,22502406793,40944396120,73680871326,131211105208,231355524048,404110659732

%N Expansion of Product_{m>=1} (1+x^m)^12.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%H Seiichi Manyama, <a href="/A022577/b022577.txt">Table of n, a(n) for n = 0..1000</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F G.f.: Product_{k>=1} ( 1 + x^k )^12.

%F Expansion of chi(-x)^-12 in powers of x where chi() is a Ramanujan theta function.

%F Expansion of k^2 / (16 * q * k') in powers of q^2. - _Michael Somos_, Jul 22 2011

%F Expansion of q^(-1/2) * (k/4) / (1 - k^2) in powers of q. - _Michael Somos_, Jul 16 2005

%F Expansion of q^(-1/2) * (eta(q^2) / eta(q))^12 in powers of q. - _Michael Somos_, Jul 16 2005

%F Euler transform of period 2 sequence [12, 0, ...]. - _Michael Somos_, Jul 16 2005

%F Given g.f. A(x), then B(q) = (q * A(q^2))^2 satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (4096*u*v + 48*u + 1)*v - u^2 . - _Michael Somos_, Jul 16 2005

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 1/64 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A007249. - _Michael Somos_, Jul 22 2011

%F A124863(n) = (-1)^n * a(n). A007096(4*n + 2) = 8 * a(n). Convolution inverse of A007249.

%F a(n) ~ exp(2 * Pi * sqrt(n)) / (128 * n^(3/4)). - _Vaclav Kotesovec_, Mar 05 2015

%F a(0) = 1, a(n) = (12/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Apr 03 2017

%e G.f. = 1 + 12*x + 78*x^2 + 376*x^3 + 1509*x^4 + 5316*x^5 + 16966*x^6 + ...

%e G.f. = q + 12*q^3 + 78*q^5 + 376*q^7 + 1509*q^9 + 5316*q^11 + 16966*q^13 + ...

%p N:= 50:

%p G:= mul(1+x^m,m=1..N+1)^12:

%p S:= series(G,x,N+1):

%p seq(coeff(S,x,n),n=0..N); # _Robert Israel_, Feb 26 2018

%t a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (m / 16 / q)^(1/2) / (1 - m), {q, 0, n}]]; (* _Michael Somos_, Jul 22 2011 *)

%t a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (m / 16 / q) /(1-m)^(1/2), {q, 0, 2 n}]]; (* _Michael Somos_, Jul 22 2011 *)

%t CoefficientList[QPochhammer[-1, q]^12/4096+O[q]^30, q] (* _Jean-François Alcover_, Nov 27 2015 *)

%t With[{nmax=50}, CoefficientList[Series[Product[(1+q^k)^12, {k,1,nmax}], {q, 0, nmax}],q]] (* _G. C. Greubel_, Feb 25 2018 *)

%o (PARI) {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, 1 + x^k, 1 + x * O(x^n))^12, n))}; /* _Michael Somos_, Jul 16 2005 */

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) / eta(x + A))^12, n))}; /* _Michael Somos_, Jul 16 2005 */

%o (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^12)) \\ _G. C. Greubel_, Feb 25 2018

%o (Magma) Coefficients(&*[(1+x^m)^12:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 25 2018

%Y Column k=12 of A286335.

%Y Cf. A000122, A000700, A007096, A007249, A010054, A121373, A124863.

%K nonn

%O 0,2

%A _N. J. A. Sloane_

%E More terms added by _G. C. Greubel_, Feb 25 2018