login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Describe previous term from the right (method A - initial term is 8).
2

%I #12 Nov 27 2016 22:01:56

%S 8,18,1811,211811,21182112,122112182112,122112181112212211,

%T 2122112231181112212211,21221122311821132221221112,

%U 12312211321321121821132221221112

%N Describe previous term from the right (method A - initial term is 8).

%C Method A = 'frequency' followed by 'digit'-indication.

%e E.g., the term after 1811 is obtained by saying "two 1's, one 8, one 1", which gives 211811.

%t split[n_]:=Split[Reverse[IntegerDigits[n]]];

%t list1[n_]:=List/@Length/@split[n];riffle1[n_]:=Riffle[split[n],list1[n]];

%t tab[n_]:=Table[i,{i,1,2*Length[list1[n]],2}];

%t list2[n_]:=Append[riffle1[n][[#]],riffle1[n][[#+1]]]&/@tab[n];

%t flat[n_]:=Flatten/@list2[n];riffle2[n_]:=Riffle[Last/@flat[n],First/@flat[n]];

%t a[1]=8; a[n_]:=FromDigits[riffle2[a[n-1]]]; Array[a,10] (* or *)

%t IntegerReverse[NestList[FromDigits[Flatten[Replace[Replace[Replace[Split[Reverse[IntegerDigits[#]]],{x_,y_}->{x,Length[{x,y}]},{1}],{x_,y_,z_}->{x,Length[{x,y,z}]},{1}],{x_}->{x,Length[{x}]},{1}]]]&,8,9]] (* _Ivan N. Ianakiev_, Nov 10 2016 *)

%Y Cf. A022506, A006711, A022482, A022507-A022513.

%K nonn,base,easy,nice

%O 0,1

%A _N. J. A. Sloane_

%E More terms from _Erich Friedman_