login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Describe previous term from the right (method A - initial term is 0).
20

%I #15 Dec 17 2021 06:03:09

%S 0,10,1011,211011,21102112,122112102112,122112101112212211,

%T 2122112231101112212211,21221122311021132221221112,

%U 12312211321321121021132221221112

%N Describe previous term from the right (method A - initial term is 0).

%C Method A = 'frequency' followed by 'digit'-indication.

%H Reinhard Zumkeller, <a href="/A022506/b022506.txt">Table of n, a(n) for n = 0..21</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LookandSaySequence.html">Look and Say Sequence</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Look-and-say_sequence">Look-and-say sequence</a>

%F For n > 1: a(n+1) = A045918(A004086(a(n))). - _Reinhard Zumkeller_, Mar 02 2014

%e The term after 1011 is obtained by saying "two 1's, one 0, one 1", which gives 211011.

%t a[0] = 0;

%t a[n_] := a[n] = Split[IntegerDigits[a[n-1]]] /. L_List /; IntegerQ[L[[1]]] :> {Length[L], L[[1]]} // Reverse // Flatten // FromDigits;

%t a /@ Range[0, 9] (* _Jean-François Alcover_, Nov 26 2019 *)

%o (Haskell)

%o a022506 n = a022506_list !! n

%o a022506_list = 0 : 10 : iterate (a045918 . a004086) 1011

%o -- _Reinhard Zumkeller_, Mar 02 2014

%Y Cf. A006711, A022482, A022507-A022513.

%K nonn,base,easy,nice

%O 0,2

%A _N. J. A. Sloane_

%E More terms from _Erich Friedman_