%I #12 May 13 2018 10:13:14
%S 3,8,15,25,38,55,77,105,140,183,235,298,372,462,566,692,838,1007,1205,
%T 1432,1698,2002,2352,2755,3210,3731,4322,4990,5747,6601,7562,8638,
%U 9854,11211,12731,14422,16315,18425,20765,23372,26258,29460,32998,36912,41229
%N a(1) = 3; a(n+1) = a(n)-th composite.
%D C. Kimberling, Fractal sequences and interspersions, Ars Combinatoria, vol. 45 p 157 1997.
%H Chai Wah Wu, <a href="/A022451/b022451.txt">Table of n, a(n) for n = 1..900</a>
%H C. Kimberling, <a href="http://faculty.evansville.edu/ck6/integer/intersp.html">Interspersions</a>
%t g[ n_Integer ] := (k = n + PrimePi[ n ] + 1; While[ k - PrimePi[ k ] - 1, k++ ]; k); NestList[ g, 3, 45 ]
%t With[{comps=Complement[Range[80000],Prime[Range[PrimePi[80000]]]]}, NestList[comps[[#+1]]&,3,50]] (* _Harvey P. Dale_, Mar 17 2012 *)
%Y Cf. A006508, A022450, A025010, A025011.
%K nonn
%O 1,1
%A _Clark Kimberling_