Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Apr 12 2014 19:27:19
%S 1,2,3,1,4,2,5,3,1,4,6,2,7,5,3,1,8,4,9,6,2,7,10,5,3,1,8,4,11,9,12,6,2,
%T 7,10,5,13,3,1,8,14,4,15,11,9,12,16,6,2,7,10,5,17,13,3,1,8,14,18,4,19,
%U 15,11,9,12,16,20,6,2,7,21,10,22,5,17,13,3,1
%N Fractal sequence of the dispersion of the composite numbers.
%D C. Kimberling, Fractal sequences and interspersions, Ars Combinatoria, vol. 45 p 157 1997.
%H C. Kimberling, <a href="http://faculty.evansville.edu/ck6/integer/intersp.html">Interspersions</a>
%t compositePi[n_] := Length[Select[Table[FixedPoint[i + PrimePi[#] + 1 &, i + PrimePi[i] + 1], {i,n}], # <= n &]]; compositefractal[n_] := PrimePi[NestWhile[compositePi, n, ! PrimeQ[#] && # != 1 &]] + 1; Array[compositefractal, 30] (* _Birkas Gyorgy_, Apr 05 2011 *)
%K nonn
%O 0,2
%A _Clark Kimberling_