login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A022398 Fibonacci sequence beginning 1, 28. 1
1, 28, 29, 57, 86, 143, 229, 372, 601, 973, 1574, 2547, 4121, 6668, 10789, 17457, 28246, 45703, 73949, 119652, 193601, 313253, 506854, 820107, 1326961, 2147068, 3474029, 5621097, 9095126, 14716223, 23811349, 38527572, 62338921, 100866493, 163205414, 264071907, 427277321 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (1, 1).

FORMULA

G.f.: (1+27*x)/(1-x-x^2). - Philippe Deléham, Nov 20 2008

a(n) = 28*A000045(n) + A000045(n-1). - Paolo P. Lava, May 19 2015

a(n) = (2^(-1-n)*((1-sqrt(5))^n*(-55+sqrt(5)) + (1+sqrt(5))^n*(55+sqrt(5)))) / sqrt(5). - Colin Barker, Mar 02 2018

MAPLE

with(numtheory): with(combinat): P:=proc(q) local n;

for n from 0 to q do print(28*fibonacci(n)+fibonacci(n-1));

od; end: P(30); # Paolo P. Lava, May 19 2015

MATHEMATICA

Table[Fibonacci[n + 2] + 26*Fibonacci[n], {n, 0, 50}] (* G. C. Greubel, Mar 01 2018 *)

PROG

(PARI) for(n=0, 40, print1(fibonacci(n+2) + 26*fibonacci(n), ", ")) \\ G. C. Greubel, Mar 01 2018

(MAGMA) [Fibonacci(n+2) + 26*Fibonacci(n): n in [0..40]]; // G. C. Greubel, Mar 01 2018

CROSSREFS

Sequence in context: A165849 A093681 A044874 * A042580 A042578 A042582

Adjacent sequences:  A022395 A022396 A022397 * A022399 A022400 A022401

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

Terms a(30) onward added by G. C. Greubel, Mar 01 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 22 19:35 EDT 2018. Contains 312918 sequences. (Running on oeis4.)