Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Feb 18 2024 02:01:36
%S 1,24,25,49,74,123,197,320,517,837,1354,2191,3545,5736,9281,15017,
%T 24298,39315,63613,102928,166541,269469,436010,705479,1141489,1846968,
%U 2988457,4835425,7823882,12659307,20483189,33142496,53625685,86768181,140393866,227162047,367555913,594717960
%N Fibonacci sequence beginning 1, 24.
%H G. C. Greubel, <a href="/A022394/b022394.txt">Table of n, a(n) for n = 0..1000</a>
%H Jia Huang, <a href="https://arxiv.org/abs/1902.11139">Hecke algebras of simply-laced type with independent parameters</a>, arXiv:1902.11139 [math.RT], 2019.
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1, 1).
%F G.f.: (1+23*x)/(1-x-x^2). - _Philippe Deléham_, Nov 20 2008
%t Table[Fibonacci[n + 2] + 22*Fibonacci[n], {n, 0, 50}] (* _G. C. Greubel_, Mar 01 2018 *)
%o (PARI) for(n=0, 40, print1(fibonacci(n+2) + 22*fibonacci(n), ", ")) \\ _G. C. Greubel_, Mar 01 2018
%o (Magma) [Fibonacci(n+2) + 22*Fibonacci(n): n in [0..40]]; // _G. C. Greubel_, Mar 01 2018
%K nonn
%O 0,2
%A _N. J. A. Sloane_
%E Terms a(30) onward added by _G. C. Greubel_, Mar 01 2018