login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Fibonacci sequence beginning 2, 10.
4

%I #40 Feb 16 2021 06:08:47

%S 2,10,12,22,34,56,90,146,236,382,618,1000,1618,2618,4236,6854,11090,

%T 17944,29034,46978,76012,122990,199002,321992,520994,842986,1363980,

%U 2206966,3570946,5777912,9348858,15126770,24475628,39602398,64078026,103680424,167758450,271438874

%N Fibonacci sequence beginning 2, 10.

%H Vincenzo Librandi, <a href="/A022367/b022367.txt">Table of n, a(n) for n = 0..1000</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,1).

%F From _R. J. Mathar_, Mar 11 2011: (Start)

%F a(n) = 2*A022095(n).

%F G.f.: 2*(1+4*x)/(1-x-x^2). (End)

%F a(n) = A147316(n-4) + A000045(n+5). - _Giuseppe Coppoletta_, Jul 27 2017

%F a(n) = 11*F(n) + F(n-3). - _J. M. Bergot_, Jul 19 2017

%t LinearRecurrence[{1,1},{2,10},40] (* _Harvey P. Dale_, Jun 17 2014 *)

%o (PARI) for(n=0,50, print1(2*(fibonacci(n+2) + 3*fibonacci(n)), ", ")) \\ _G. C. Greubel_, Aug 27 2017

%Y Cf. A000045, A022095, A147316.

%K nonn

%O 0,1

%A _N. J. A. Sloane_

%E More terms from _Michel Marcus_, Jul 05 2017