OFFSET
0,2
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (1, 1).
FORMULA
G.f.: 21*x/(1 - x - x^2). - Philippe Deléham, Nov 20 2008
a(n) = 21*Fibonacci(n) = h*Fibonacci(n+k) + Fibonacci(n+k-h) with h=8, k=2. - Bruno Berselli, Feb 20 2017
From Colin Barker, Feb 20 2017: (Start)
a(n) = -21*(((1-sqrt(5))/2)^n - ((1+sqrt(5))/2)^n) / sqrt(5).
a(n) = a(n-1) + a(n-2) for n>1.
(End)
MATHEMATICA
LinearRecurrence[{1, 1}, {0, 21}, 30] (* Harvey P. Dale, Dec 13 2014 *)
PROG
(PARI) concat(0, Vec(21*x/(1 - x - x^2) + O(x^50))) \\ Colin Barker, Feb 20 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved