login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n*(25*n - 1)/2.
3

%I #23 Sep 08 2022 08:44:46

%S 0,12,49,111,198,310,447,609,796,1008,1245,1507,1794,2106,2443,2805,

%T 3192,3604,4041,4503,4990,5502,6039,6601,7188,7800,8437,9099,9786,

%U 10498,11235,11997,12784,13596,14433

%N a(n) = n*(25*n - 1)/2.

%H G. C. Greubel, <a href="/A022282/b022282.txt">Table of n, a(n) for n = 0..5000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = 25*n + a(n-1) - 13 for n>0, a(0)=0. - _Vincenzo Librandi_, Aug 04 2010

%F G.f.: x*(12 + 13*x)/(1 - x)^3 . - _R. J. Mathar_, Aug 04 2016

%F a(n) = A000217(13*n-1) - A000217(12*n-1). - _Bruno Berselli_, Oct 14 2016

%F E.g.f.: (x/2)*(25*x + 24)*exp(x). - _G. C. Greubel_, Aug 23 2017

%F a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). - _Wesley Ivan Hurt_, Apr 23 2021

%t Table[n (25 n - 1)/2, {n, 0, 40}] (* _Bruno Berselli_, Oct 14 2016 *)

%o (PARI) a(n)=n*(25*n-1)/2 \\ _Charles R Greathouse IV_, Jun 16 2017

%o (Magma) [n*(25*n - 1)/2 : n in [0..50]]; // _Wesley Ivan Hurt_, Apr 23 2021

%Y Cf. A022283.

%Y Cf. similar sequences listed in A022288.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_