login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n*(9*n + 1)/2.
19

%I #82 Mar 24 2022 03:41:30

%S 0,5,19,42,74,115,165,224,292,369,455,550,654,767,889,1020,1160,1309,

%T 1467,1634,1810,1995,2189,2392,2604,2825,3055,3294,3542,3799,4065,

%U 4340,4624,4917,5219,5530,5850,6179

%N a(n) = n*(9*n + 1)/2.

%C From _Floor van Lamoen_, Jul 21 2001: (Start)

%C Write 0, 1, 2, 3, 4, ... in a triangular spiral; then a(n) is the sequence found by reading the line from 0 in the direction 0, 5, ... . The spiral begins:

%C .

%C 15

%C / \

%C 16 14

%C / \

%C 17 3 13

%C / / \ \

%C 18 4 2 12

%C / / \ \

%C 19 5 0---1 11

%C / / \

%C 20 6---7---8---9--10

%C .

%C (End)

%C a(n) is the sum of n consecutive integers starting from 4*n+1: (5), (9+10), (13+14+15), ... - _Klaus Purath_, Jul 07 2020

%C a(n) with n>0 are the numbers with the periodic length 3 in the Bulgarian and Mancala solitaire. - _Paul Weisenhorn_, Jan 29 2022

%H Lei Zhou, <a href="/A022267/b022267.txt">Table of n, a(n) for n = 0..10000</a>

%H Milan Janjic, <a href="http://www.pmfbl.org/janjic/">Two Enumerative Functions</a>

%H Leo Tavares, <a href="/A022267/a022267.jpg">Illustration: X Triangles</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = A110449(n, 4) for n>3.

%F From _Bruno Berselli_, Feb 11 2011: (Start)

%F G.f.: x*(5 + 4*x)/(1 - x)^3.

%F a(n) = 4*A000217(n) + A000566(n). (End)

%F a(n) = 9*n + a(n-1) - 4 with n>0, a(0)=0. - _Vincenzo Librandi_, Aug 04 2010

%F a(n) = A218470(9*n+4). - _Philippe Deléham_, Mar 27 2013

%F a(n) = A000217(5*n) - A000217(4*n). - _Bruno Berselli_, Oct 13 2016

%F E.g.f.: (1/2)*(9*x^2 + 10*x)*exp(x). - _G. C. Greubel_, Jul 17 2017

%F a(n) = A060544(n+1) - A016813(n). - _Leo Tavares_, Mar 20 2022

%p seq(binomial(9*n+1,2)/9, n=0..37); # _Zerinvary Lajos_, Jan 21 2007

%t Table[ n (9 n + 1)/2, {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 5, 19}, 40] (* _Harvey P. Dale_, Jul 01 2013 *)

%o (PARI) vector(100,n,(n-1)*(9*n-8)/2) \\ _Derek Orr_, Feb 06 2015

%Y Cf. A000217, A051682, A110449, A235332.

%Y Cf. numbers of the form n*(d*n+10-d)/2: A008587, A056000, A028347, A140090, A014106, A028895, A045944, A186029, A007742, A033429, A022268, A049452, A186030, A135703, A152734, A139273.

%Y Cf. similar sequences listed in A254963.

%Y Cf. similar sequences listed in A022289.

%Y Cf. A060544, A016813.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_