The OEIS is supported by the many generous donors to the OEIS Foundation.

A022235
Gaussian binomial coefficients [ n,6 ] for q = 7.
1
1, 137257, 16484565700, 1945063360640100, 228930106321885702602, 26935000671139346639437914, 3168902828959544132129870582100, 372818701621367349292382501162685300, 43861755035533826577243997768793428552803
OFFSET
6,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
FORMULA
a(n) = Product_{i=1..6} (7^(n-i+1)-1)/(7^i-1), by definition. - Vincenzo Librandi, Aug 06 2016
G.f.: x^6/((1 - x)*(1 - 7*x)*(1 - 49*x)*(1 - 343*x)*(1 - 2401*x)*(1 - 16807*x)*(1 - 117649*x)). - Ilya Gutkovskiy, Aug 06 2016
MATHEMATICA
Table[QBinomial[n, 6, 7], {n, 6, 20}] (* Vincenzo Librandi, Aug 06 2016 *)
PROG
(Sage) [gaussian_binomial(n, 6, 7) for n in range(6, 15)] # Zerinvary Lajos, May 27 2009
(Magma) r:=6; q:=7; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 06 2016
(PARI) r=6; q=7; for(n=r, 30, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, Jun 13 2018
CROSSREFS
Sequence in context: A191819 A015071 A130422 * A234225 A110598 A069336
KEYWORD
nonn
AUTHOR
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 06 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 02:18 EDT 2024. Contains 376016 sequences. (Running on oeis4.)