login
A022203
Gaussian binomial coefficients [ n,12 ] for q = 3.
1
1, 797161, 476599444231, 263026177881648511, 141530177899268957392924, 75525744222315755534269847164, 40192610828533997938427918835113044, 21369772545260475331545384574852469714164, 11358504503408920628447755309084790198295654610
OFFSET
12,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
G.f.: x^12/((1-x)*(1-3*x)*(1-9*x)*(1-27*x)*(1-81*x)*(1-243*x)*(1-729*x)*(1-2187*x)*(1-6561*x)*(1-19683*x)*(1-59049*x)*(1-177147*x)*(1-531441*x) ). - Vincenzo Librandi, Aug 11 2016
a(n) = Product_{i=1..12} (3^(n-i+1)-1)/(3^i-1), by definition. - Vincenzo Librandi, Aug 11 2016
MATHEMATICA
Table[QBinomial[n, 12, 3], {n, 12, 20}] (* Vincenzo Librandi, Aug 11 2016 *)
PROG
(Sage) [gaussian_binomial(n, 12, 3) for n in range(12, 21)] # Zerinvary Lajos, May 28 2009
(Magma) r:=12; q:=3; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 11 2016
(PARI) r=12; q=3; for(n=r, 35, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, Jun 01 2018
CROSSREFS
Sequence in context: A254844 A259304 A151561 * A234784 A206135 A237543
KEYWORD
nonn,easy
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 11 2016
STATUS
approved