login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

First row of spectral array W(sqrt(5)-1).
9

%I #22 May 14 2019 11:11:44

%S 1,5,6,26,32,136,168,712,880,3728,4608,19520,24128,102208,126336,

%T 535168,661504,2802176,3463680,14672384,18136064,76825600,94961664,

%U 402264064,497225728,2106281984,2603507712

%N First row of spectral array W(sqrt(5)-1).

%H A. Fraenkel and C. Kimberling, <a href="http://dx.doi.org/10.1016/0012-365X(94)90259-3">Generalized Wythoff arrays, shuffles and interspersions</a>, Discrete Mathematics 126 (1994) 137-149.

%F Conjectures: a(n) = 6*a(n-2)-4*a(n-4). G.f.: -(x+1)*(4*x^2-4*x-1) / (4*x^4-6*x^2+1). - _Colin Barker_, Oct 23 2014

%o (PARI)

%o \\ The first row of the generalized Wythoff array W(h),

%o \\ where h is an irrational number between 1 and 2.

%o row1(h, m) = {

%o my(

%o a=vector(m, n, floor(n*h)),

%o b=setminus(vector(m, n, n), a),

%o w=[a[1]^2, b[a[1]]],

%o j=3

%o );

%o while(1,

%o if(j%2==1,

%o if(w[j-1]<=#a, w=concat(w, a[w[j-1]]), return(w))

%o ,

%o if(w[j-2]<=#b, w=concat(w, b[w[j-2]]), return(w))

%o );

%o j++

%o );

%o w

%o }

%o row1(sqrt(5)-1, 100000) \\ _Colin Barker_, Oct 23 2014

%K nonn,more

%O 0,2

%A _Clark Kimberling_

%E a(14)-a(18) from _Colin Barker_, Oct 23 2014 and _Michel Marcus_, Oct 24 2014

%E a(19)-a(26) from _Sean A. Irvine_, May 14 2019