login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Fibonacci sequence beginning 1, 7.
17

%I #76 Oct 03 2024 08:32:33

%S 1,7,8,15,23,38,61,99,160,259,419,678,1097,1775,2872,4647,7519,12166,

%T 19685,31851,51536,83387,134923,218310,353233,571543,924776,1496319,

%U 2421095,3917414,6338509,10255923,16594432,26850355,43444787,70295142,113739929

%N Fibonacci sequence beginning 1, 7.

%C a(n-1) = Sum_{k=0..ceiling((n-1)/2)} P(7;n-1-k,k) with n>=1, a(-1)=6. These are the SW-NE diagonals in P(7;n,k), the (7,1) Pascal triangle A093564. Observation by _Paul Barry_, Apr 29 2004. Proof via recursion relations and comparison of inputs.

%C Pisano period lengths: 1, 3, 8, 6, 20, 24, 16, 12, 24, 60, 10, 24, 28, 48, 40, 24, 36, 24, 18, 60, ... (perhaps the same as A001175). - _R. J. Mathar_, Aug 10 2012

%C For n >= 1, a(n) is the number of edge covers of the tadpole graph T_{4,n-1} with T_{4,0} interpreted as just the cycle graph C_4. Example: If n=2, we have C_4 and path P_1 joined by a bridge. This is the cycle with a pendant and has 7 edge covers. - _Feryal Alayont_, Sep 22 2024

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TadpoleGraph.html">Tadpole Graph</a>.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,1).

%F a(n) = a(n-1) + a(n-2) for n>=2, a(0)=1, a(1)=7, a(-1):=6.

%F G.f.: (1+6*x)/(1-x-x^2).

%F a(n) = (2^(-1-n)*((1 - sqrt(5))^n*(-13 + sqrt(5)) + (1 + sqrt(5))^n*(13 + sqrt(5))))/sqrt(5). - _Herbert Kociemba_

%F a(n) = 6*A000045(n) + A000045(n+1). - _R. J. Mathar_, Aug 10 2012

%F a(n) = 8*A000045(n) - A000045(n-2). - _Bruno Berselli_, Feb 20 2017

%F From _Aamen Muharram_, Aug 05 2022: (Start)

%F a(n) = F(n-4) + F(n-1) + F(n+4),

%F a(n) = F(n) + F(n+4) - F(n-3),

%F where F(n) = A000045(n) is the Fibonacci numbers. (End)

%t First /@ NestList[{Last@ #, Total@ #} &, {1, 7}, 36] (* or *)

%t CoefficientList[Series[(1 + 6 x)/(1 - x - x^2), {x, 0, 36}], x] (* _Michael De Vlieger_, Feb 20 2017 *)

%t LinearRecurrence[{1,1},{1,7},40] (* _Harvey P. Dale_, May 17 2018 *)

%o (Magma) a0:=1; a1:=7; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]]; // _Bruno Berselli_, Feb 12 2013

%o (PARI) a(n)=([0,1; 1,1]^n*[1;7])[1,1] \\ _Charles R Greathouse IV_, Oct 03 2016

%Y a(n) = A101220(6, 0, n+1) = A109754(6, n+1) = A118654(3, n).

%Y Cf. A000045, A131778.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_