Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #56 Sep 08 2022 08:44:45
%S 0,4,4,8,12,20,32,52,84,136,220,356,576,932,1508,2440,3948,6388,10336,
%T 16724,27060,43784,70844,114628,185472,300100,485572,785672,1271244,
%U 2056916,3328160,5385076,8713236,14098312,22811548,36909860,59721408,96631268
%N Fibonacci sequence beginning 0, 4.
%C For n > 1, this sequence gives the number of binary strings of length n that do not contain 0000, 0101, 1010, or 1111 as contiguous substrings (see A230127). - _Nathaniel Johnston_, Oct 11 2013
%D A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 18.
%H Vincenzo Librandi, <a href="/A022087/b022087.txt">Table of n, a(n) for n = 0..1000</a>
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,1).
%F a(n) = 4*F(n) = F(n-2) + F(n) + F(n+2), where F = A000045.
%F a(n) = round( phi^n*(8*phi-4)/5 ) for n>2. - _Thomas Baruchel_, Sep 08 2004
%F a(n) = A119457(n+2,n-1) for n>1. - _Reinhard Zumkeller_, May 20 2006
%F G.f.: 4*x/(1-x-x^2). - _Philippe Deléham_, Nov 19 2008
%F a(n) = F(n+9) - 17*F(n+3), where F=A000045. - _Manuel Valdivia_, Dec 15 2009
%F G.f.: Q(0) -1, where Q(k) = 1 + x^2 + (4*k+5)*x - x*(4*k+1 + x)/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Oct 07 2013
%F a(n) = Fibonacci(n+3) - Fibonacci(n-3), where Fibonacci(-3..-1) = 2,-1,1. [_Bruno Berselli_, May 22 2015]
%p a:= n-> (Matrix([[4,0]]). Matrix([[1,1],[1,0]])^n)[1,2]: seq(a(n), n=0..40); # _Alois P. Heinz_, Aug 17 2008
%t a={};b=0;c=4;AppendTo[a,b];AppendTo[a,c];Do[b=b+c;AppendTo[a,b];c=b+c;AppendTo[a,c],{n,1,9,1}];a (* _Vladimir Joseph Stephan Orlovsky_, Jul 22 2008 *)
%t Table[4 Fibonacci(n), {n, 0, 40}] (* _Bruno Berselli_, May 22 2015 *)
%o (PARI) a(n)=4*fibonacci(n) \\ _Charles R Greathouse IV_, Jun 05 2011
%o (Magma) [4*Fibonacci(n): n in [0..40]]; // _Vincenzo Librandi_, Oct 12 2013
%Y Cf. A000045.
%Y Cf. similar sequences listed in A258160.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_