login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Define the sequence T(a(0), a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(7,50).
1

%I #22 Jul 13 2023 09:50:10

%S 7,50,357,2548,18185,129785,926265,6610678,47179871,336718900,

%T 2403135388,17150981703,122405160710,873595670959,6234781212586,

%U 44497126143199,317572368218278,2266488148722385,16175741476249015,115444950574278036,823921217624950245

%N Define the sequence T(a(0), a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(7,50).

%C This coincides with the Pisot T(7,50) sequence as defined in A008776 at least up to n <= 14000. - _R. J. Mathar_, Feb 13 2016

%H Colin Barker, <a href="/A022037/b022037.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Ph#Pisot">Index entries for Pisot sequences</a>

%F Empirical g.f.: (7+x-x^3-x^4-x^5-x^6) / (1-7*x-x^2+x^4+x^5+x^6+x^7). - _Colin Barker_, Dec 02 2014

%o (PARI) T(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=floor(a[n-1]^2/a[n-2])); a;

%o T(7, 50, 30) \\ _Colin Barker_, Feb 14 2016

%K nonn

%O 0,1

%A _R. K. Guy_