%I #22 Jul 13 2023 09:50:10
%S 7,50,357,2548,18185,129785,926265,6610678,47179871,336718900,
%T 2403135388,17150981703,122405160710,873595670959,6234781212586,
%U 44497126143199,317572368218278,2266488148722385,16175741476249015,115444950574278036,823921217624950245
%N Define the sequence T(a(0), a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(7,50).
%C This coincides with the Pisot T(7,50) sequence as defined in A008776 at least up to n <= 14000. - _R. J. Mathar_, Feb 13 2016
%H Colin Barker, <a href="/A022037/b022037.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Ph#Pisot">Index entries for Pisot sequences</a>
%F Empirical g.f.: (7+x-x^3-x^4-x^5-x^6) / (1-7*x-x^2+x^4+x^5+x^6+x^7). - _Colin Barker_, Dec 02 2014
%o (PARI) T(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=floor(a[n-1]^2/a[n-2])); a;
%o T(7, 50, 30) \\ _Colin Barker_, Feb 14 2016
%K nonn
%O 0,1
%A _R. K. Guy_