login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Period 4: repeat [0, 0, 1, 1].
33

%I #124 Dec 18 2023 12:16:40

%S 0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,

%T 1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,

%U 0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1

%N Period 4: repeat [0, 0, 1, 1].

%C Decimal expansion of 1/909.

%C Lexicographically earliest de Bruijn sequence for n = 2 and k = 2.

%C Except for first term, binary expansion of the decimal number 1/10 = 0.000110011001100110011... in base 2. - _Benoit Cloitre_, May 18 2002

%C Content of #2 binary placeholder when n is converted from decimal to binary. a(n) = n*(n-1)/2 mod 2. Example: a(7) = 1 since 7 in binary is 1 -1- 1 and (7*6/2) mod 2 = 1. - Anne M. Donovan (anned3005(AT)aol.com), Sep 15 2003

%C Expansion in any base b of 1/((b-1)*(b^2+1)) = 1/(b^3-b^2+b-1). E.g., 1/5 in base 2, 1/20 in base 3, 1/51 in base 4, etc. - _Franklin T. Adams-Watters_, Nov 07 2006

%C Except for first term, parity of the triangular numbers A000217. - _Omar E. Pol_, Jan 17 2012

%C Except for first term, more generally: 1) Parity of the k-polygonal numbers, if k is odd (Cf. A139600, A139601). 2) Parity of the generalized k-gonal numbers, for even k >= 6. - _Omar E. Pol_, Feb 05 2012

%C Except for first term, parity of Recamán's sequence A005132. - _Omar E. Pol_, Apr 13 2012

%C Inverse binomial transform of A000749(n+1). - _Wesley Ivan Hurt_, Dec 30 2015

%C Least significant bit of tribonacci numbers (A000073). - _Andres Cicuttin_, Apr 04 2016

%H Guenther Schrack, <a href="/A021913/b021913.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,-1,1).

%F From _Paul Barry_, Aug 30 2004: (Start)

%F G.f.: x^2*(1 + x)/(1 - x^4).

%F a(n) = 1/2 - cos(Pi*n/2)/2 - sin(Pi*n/2)/2.

%F a(n) = a(n-1) - a(n-2) + a(n-3) for n > 2. (End)

%F a(n+2) = Sum_{k=0..n} b(k), with b(k) = A056594(k) (partial sums of S(n,x) Chebyshev polynomials at x=0).

%F a(n) = -a(n-2) + 1, for n >= 2 with a(0) = a(1) = 0.

%F G.f.: x^2/((1 - x)*(1 + x^2)) = x^2/(1 - x + x^2 - x^3).

%F From _Jaume Oliver Lafont_, Dec 05 2008: (Start)

%F a(n) = 1/2 - sin((2n+1)*Pi/4)/sqrt(2).

%F a(n) = 1/2 - cos((2n-1)*Pi/4)/sqrt(2). (End)

%F a(n) = floor((n mod 4)/2). - _Reinhard Zumkeller_, Apr 15 2011

%F Euler transform of length 4 sequence [1, -1, 0, 1]. - _Michael Somos_, Feb 28 2014

%F a(1-n) = a(n) for all n in Z. - _Michael Somos_, Feb 28 2014

%F From _Wesley Ivan Hurt_, Jul 22 2016: (Start)

%F a(n) = a(n-4) for n > 3.

%F a(n) = A133872(n+2).

%F a(n) + a(n+1) = A007877(n). (End)

%F E.g.f.: (exp(x) - sin(x) - cos(x))/2. - _Ilya Gutkovskiy_, Jul 11 2016

%F a(n) = (1 - (-1)^(n*(n-1)/2))/2. - _Guenther Schrack_, Feb 28 2019

%e G.f. = x^2 + x^3 + x^6 + x^7 + x^10 + x^11 + x^14 + x^15 + x^18 + x^19 + ...;

%e 1/909 = 0.001100110011001 ...

%p A021913:=n->floor((n mod 4)/2); seq(A021913(n), n=0..100); # _Wesley Ivan Hurt_, Feb 28 2014

%t Table[Floor[Mod[n,4]/2], {n,0,100}] (* _Wesley Ivan Hurt_, Feb 28 2014 *)

%t a[ n_] := Mod[ Quotient[ n, 2], 2]; (* _Michael Somos_, Feb 28 2014 *)

%t LinearRecurrence[{1,-1,1},{0,0,1}, 100] (* _Ray Chandler_, Aug 25 2015 *)

%t CoefficientList[Series[x^2(1+x)/(1-x^4), {x, 0, 100}], x] (* _Vincenzo Librandi_, Dec 31 2015 *)

%t (1-(-1)^Binomial[Range[0, 100], 2])/2 (* _G. C. Greubel_, Apr 03 2019 *)

%o (PARI) {a(n) = n \ 2 % 2}; /* _Michael Somos_, Feb 28 2014 */

%o (PARI) x='x+O('x^99); concat([0, 0], Vec(x^2/(1-x+x^2-x^3))) \\ _Altug Alkan_, Apr 04 2016

%o (Magma) &cat [[0, 0, 1, 1]^^30]; // _Vincenzo Librandi_, Dec 31 2015

%Y Cf. A000073, A000217, A000749, A005132, A007877, A056594, A062158, A133872, A139600, A139601.

%K nonn,cons,easy

%O 0,1

%A _N. J. A. Sloane_

%E Chebyshev comment from _Wolfdieter Lang_, Sep 10 2004