Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Apr 02 2022 15:54:01
%S 1,23,358,4758,58419,686541,7864936,88727036,991573957,11016698979,
%T 121950785034,1346833901634,14852822151415,163644677778137,
%U 1801937252261452,19834231783445352,218267009404507593
%N Expansion of 1/((1-x)(1-4x)(1-7x)(1-11x)).
%H Vincenzo Librandi, <a href="/A021884/b021884.txt">Table of n, a(n) for n = 0..200</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (23,-171,457,-308).
%F a(n) = (9*11^(n+3)-35*7^(n+3)+40*4^(n+3)-14)/2520. - _Yahia Kahloune_, May 24 2013
%F a(n) = 23*a(n-1) - 171*a(n-2) + 457*a(n-3) - 308*a(n-4) for n > 3. - _Chai Wah Wu_, Feb 03 2021
%t CoefficientList[Series[1 / ((1 - x) (1 - 4 x) (1 - 7 x) (1 - 11 x)), {x, 0, 20}], x] (* _Vincenzo Librandi_, Jul 11 2013 *)
%t LinearRecurrence[{23,-171,457,-308},{1,23,358,4758},20] (* _Harvey P. Dale_, Apr 02 2022 *)
%Y Cf. A019623 (first differences).
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_.