login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A021534
Expansion of 1/((1-x)(1-3x)(1-6x)(1-12x)).
1
1, 22, 337, 4522, 57253, 705334, 8574889, 103567234, 1246828045, 14986093486, 179978152081, 2160608272186, 25932522746677, 311221616234278, 3734847461630713, 44819297962008178, 537838346143305949
OFFSET
0,2
FORMULA
a(0)=1, a(1)=22; for n>1, a(n) = 18*a(n-1) -72*a(n-2) +(3^n - 1)/2. - Vincenzo Librandi, Jul 10 2013
a(0)=1, a(1)=22, a(2)=337, a(3)=4522; for n>3, a(n) = 22*a(n-1) -147*a(n-2) +342*a(n-3) -216*a(n-4). - Vincenzo Librandi, Jul 11 2013
a(n) = -1/110-(12/5)*6^n+(1/2)*3^n+(32/11)*12^n - Robert Israel, Apr 06 2014
MATHEMATICA
CoefficientList[Series[1 / ((1 - x) (1 - 3 x) (1 - 6 x) (1 - 12 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jul 11 2013 *)
LinearRecurrence[{22, -147, 342, -216}, {1, 22, 337, 4522}, 20] (* Harvey P. Dale, Mar 05 2019 *)
PROG
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)*(1-3*x)*(1-6*x)*(1-12*x)))); /* or */ I:=[1, 22, 337, 4522]; [n le 4 select I[n] else 22*Self(n-1)-147*Self(n-2)+342*Self(n-3)-216*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Jul 11 2013
CROSSREFS
Sequence in context: A223812 A018090 A021274 * A018070 A332873 A019490
KEYWORD
nonn,easy
AUTHOR
STATUS
approved