Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #8 Aug 11 2020 01:37:46
%S 0,0,2,0,7,0,3,9,3,3,7,4,7,4,1,2,0,0,8,2,8,1,5,7,3,4,9,8,9,6,4,8,0,3,
%T 3,1,2,6,2,9,3,9,9,5,8,5,9,2,1,3,2,5,0,5,1,7,5,9,8,3,4,3,6,8,5,3,0,0,
%U 2,0,7,0,3,9,3,3,7,4,7,4,1,2,0,0,8,2,8,1,5,7,3,4,9,8,9,6,4,8,0
%N Decimal expansion of 1/483.
%H <a href="/index/Rec#order_65">Index entries for linear recurrences with constant coefficients</a>, signature (1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1).
%F From _Chai Wah Wu_, Aug 10 2020: (Start)
%F a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) - a(n-6) + a(n-7) - a(n-8) + a(n-9) - a(n-10) + a(n-11) - a(n-12) + a(n-13) - a(n-14) + a(n-15) - a(n-16) + a(n-17) - a(n-18) + a(n-19) - a(n-20) + a(n-21) - a(n-22) + a(n-23) - a(n-24) + a(n-25) - a(n-26) + a(n-27) - a(n-28) + a(n-29) - a(n-30) + a(n-31) - a(n-32) + a(n-33) - a(n-34) + a(n-35) - a(n-36) + a(n-37) - a(n-38) + a(n-39) - a(n-40) + a(n-41) - a(n-42) + a(n-43) - a(n-44) + a(n-45) - a(n-46) + a(n-47) - a(n-48) + a(n-49) - a(n-50) + a(n-51) - a(n-52) + a(n-53) - a(n-54) + a(n-55) - a(n-56) + a(n-57) - a(n-58) + a(n-59) - a(n-60) + a(n-61) - a(n-62) + a(n-63) - a(n-64) + a(n-65) for n > 64.
%F G.f.: x^2*(-3*x^62 - 2*x^61 - 6*x^60 - 3*x^58 - x^57 - 2*x^56 - 6*x^55 - 3*x^54 - 2*x^53 - 5*x^52 + 4*x^51 - 9*x^50 + 9*x^49 - 14*x^48 + 12*x^47 - 15*x^46 + 14*x^45 - 16*x^44 + 7*x^43 - 12*x^42 + 4*x^41 - 9*x^40 - 9*x^38 + 6*x^37 - 15*x^36 + 13*x^35 - 19*x^34 + 17*x^33 - 18*x^32 + 15*x^31 - 18*x^30 + 18*x^29 - 26*x^28 + 22*x^27 - 28*x^26 + 19*x^25 - 27*x^24 + 18*x^23 - 22*x^22 + 19*x^21 - 26*x^20 + 21*x^19 - 22*x^18 + 14*x^17 - 16*x^16 + 8*x^15 - 8*x^14 + 8*x^13 - 10*x^12 + 9*x^11 - 13*x^10 + 6*x^9 - 10*x^8 + 3*x^7 - 6*x^6 + 3*x^5 - 12*x^4 + 9*x^3 - 9*x^2 + 2*x - 2)/((x - 1)*(x^2 - x + 1)*(x^2 + x + 1)*(x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)*(x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x^20 - x^19 + x^17 - x^16 + x^14 - x^13 + x^11 - x^10 + x^9 - x^7 + x^6 - x^4 + x^3 - x + 1)*(x^20 + x^19 - x^17 - x^16 + x^14 + x^13 - x^11 - x^10 - x^9 + x^7 + x^6 - x^4 - x^3 + x + 1)). (End)
%K nonn,cons
%O 0,3
%A _N. J. A. Sloane_.