The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A021337 Decimal expansion of 1/333. 3
 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,0,1). FORMULA a(n) = (1/3)*{4*(n mod 3)-2*[(n+1) mod 3]+[(n+2) mod 3]}. [Paolo P. Lava, Nov 10 2009] G.f.: 3*x^2/(1 - x^3). - Chai Wah Wu, Jun 21 2016 From Wesley Ivan Hurt, Jul 02 2016: (Start) a(n) = a(n-3) for n>2. a(n) = 1 - cos(2*n*Pi/3) - sqrt(3)*sin(2*n*Pi/3). a(n) = 3*(1 - sgn((n+1) mod 3)). a(n) = 1 + (n mod 3) - ((n+1) mod 3). (End) MAPLE seq(op([0, 0, 3]), n=0..50); # Wesley Ivan Hurt, Jul 02 2016 MATHEMATICA PadLeft[First@#, Abs@Last@# + Length@First@#]&@RealDigits[N[1/333, 100]] (* Vincenzo Librandi, Jun 22 2016 *) PadRight[{}, 100, {0, 0, 3}] (* Wesley Ivan Hurt, Jul 02 2016 *) PROG (Magma) &cat [[0, 0, 3]^^30]; // Wesley Ivan Hurt, Jul 02 2016 CROSSREFS Sequence in context: A350914 A346607 A095104 * A361824 A293903 A284444 Adjacent sequences: A021334 A021335 A021336 * A021338 A021339 A021340 KEYWORD nonn,cons,easy AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 10:53 EST 2023. Contains 367722 sequences. (Running on oeis4.)