login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A021337 Decimal expansion of 1/333. 3
0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0,0,1).

FORMULA

a(n) = (1/3)*{4*(n mod 3)-2*[(n+1) mod 3]+[(n+2) mod 3]}. [Paolo P. Lava, Nov 10 2009]

G.f.: 3*x^2/(1 - x^3). - Chai Wah Wu, Jun 21 2016

From Wesley Ivan Hurt, Jul 02 2016: (Start)

a(n) = a(n-3) for n>2.

a(n) = 1 - cos(2*n*Pi/3) - sqrt(3)*sin(2*n*Pi/3).

a(n) = 3*(1 - sgn((n+1) mod 3)).

a(n) = 1 + (n mod 3) - ((n+1) mod 3). (End)

MAPLE

seq(op([0, 0, 3]), n=0..50); # Wesley Ivan Hurt, Jul 02 2016

MATHEMATICA

PadLeft[First@#, Abs@Last@# + Length@First@#]&@RealDigits[N[1/333, 100]] (* Vincenzo Librandi, Jun 22 2016 *)

PadRight[{}, 100, {0, 0, 3}] (* Wesley Ivan Hurt, Jul 02 2016 *)

PROG

(MAGMA) &cat [[0, 0, 3]^^30]; // Wesley Ivan Hurt, Jul 02 2016

CROSSREFS

Sequence in context: A112883 A117138 A095104 * A033685 A272974 A063691

Adjacent sequences:  A021334 A021335 A021336 * A021338 A021339 A021340

KEYWORD

nonn,cons,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 5 05:27 EST 2016. Contains 278761 sequences.