login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A021324
Expansion of 1/((1-x)(1-2x)(1-10x)(1-12x)).
1
1, 25, 437, 6629, 93429, 1260021, 16509109, 211998133, 2682866357, 33583284917, 416888307381, 5141548576437, 63087471804085, 770938550533813, 9390151495286453, 114070706832309941, 1382737370876575413
OFFSET
0,2
FORMULA
a(n) = (36*12^(n+3) - 55*10^(n+3) + 99*2^(n+3) - 80)/7920. [Yahia Kahloune, Jul 07 2013]
a(0)=1, a(1)=25; for n>1, a(n) = 22*a(n-1) -120*a(n-2) +2^n -1. - Vincenzo Librandi, Jul 09 2013
a(0)=1, a(1)=25, a(2)=437, a(3)=6629; for n>3, a(n) = 25*a(n-1) -188*a(n-2) +404*a(n-3) -240*a(n-4). - Vincenzo Librandi, Jul 09 2013
MATHEMATICA
CoefficientList[Series[1 / ((1 - x) (1 - 2 x) (1 - 10 x) (1 - 12 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jul 09 2013 *)
PROG
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)*(1-2*x)*(1-10*x)*(1-12*x)))); // Vincenzo Librandi, Jul 09 2013
(Magma) I:=[1, 25, 437, 6629]; [n le 4 select I[n] else 25*Self(n-1)-188*Self(n-2)+404*Self(n-3)-240*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Jul 09 2013
CROSSREFS
Sequence in context: A019722 A180800 A004346 * A092430 A018207 A362428
KEYWORD
nonn,easy
STATUS
approved