login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/((1-x)(1-2x)(1-6x)(1-11x)).
1

%I #24 Nov 16 2024 20:18:52

%S 1,20,281,3472,40509,459564,5139121,57034088,630398021,6952517572,

%T 76586531385,843104877888,9278071860877,102082299710684,

%U 1123046352296513,12354356208201112,135902996287980117,1494963427154650740,16444780506622899145,180893682420383385200

%N Expansion of 1/((1-x)(1-2x)(1-6x)(1-11x)).

%H Vincenzo Librandi, <a href="/A021204/b021204.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (20,-119,232,-132).

%F a(n) = (2*11^(n+3)-9*6^(n+3)+25*2^(n+3)-18)/900. - _Yahia Kahloune_, May 21 2013

%F a(0)=1, a(1)=20; for n>1, a(n) = 17*a(n-1) -66*a(n-2) +2^n -1. - _Vincenzo Librandi_, Jul 08 2013

%F a(0)=1, a(1)=20, a(2)=281, a(3)=3472; for n>3, a(n) = 20*a(n-1) -119*a(n-2) +232*a(n-3) -132*a(n-4). - _Vincenzo Librandi_, Jul 08 2013

%t CoefficientList[Series[1 / ((1 - x) (1 - 2 x) (1 - 6 x) (1 - 11 x)), {x, 0, 30}], x] (* _Harvey P. Dale_, Mar 12 2011 *)

%o (PARI) x='x+O('x^66); Vec(1/((1-x)*(1-2*x)*(1-6*x)*(1-11*x))) \\ _Joerg Arndt_, May 21 2013

%o (Magma) I:=[1, 20, 281, 3472]; [n le 4 select I[n] else 20*Self(n-1)-119*Self(n-2)+232*Self(n-3)-132*Self(n-4): n in [1..25]]; // _Vincenzo Librandi_, Jul 08 2013

%o (Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)*(1-2*x)*(1-6*x)*(1-11*x)))); // _Vincenzo Librandi_, Jul 08 2013

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_.