login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A021064
Expansion of 1/((1-x)(1-2x)(1-3x)(1-12x)).
1
1, 18, 241, 2982, 36085, 433986, 5210857, 62539614, 750503869, 9006132954, 108073857073, 1296887073846, 15562647261253, 186751774276722, 2241021312778489, 26892255817780878, 322707070006818637
OFFSET
0,2
FORMULA
a(0)=1, a(1)=18; for n>1, a(n)= 15*a(n-1) -36*a(n-2) + 2^n - 1. - Vincenzo Librandi, Jul 05 2013
a(0)=1, a(1)=18, a(2)=241, a(3)=2982; for n>3, a(n) = 18*a(n-1) -83*a(n-2) +138*a(n-3) -72*a(n-4). - Vincenzo Librandi, Jul 05 2013
a(n) = (12^(n+3) - 55*3^(n+3) + 99*2^(n+3) - 45)/990. [Yahia Kahloune, Jul 07 2013]
MATHEMATICA
CoefficientList[Series[1 / ((1 - x) (1 - 2 x) (1 - 3 x) (1 - 12 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jul 05 2013 *)
PROG
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)*(1-2*x)*(1-3*x)*(1-12*x)))); /* or */ I:=[1, 18, 241, 2982]; [n le 4 select I[n] else 18*Self(n-1)-83*Self(n-2)+138*Self(n-3)-72*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Jul 05 2013
CROSSREFS
Sequence in context: A016301 A058126 A016247 * A181379 A080629 A053540
KEYWORD
nonn,easy
AUTHOR
STATUS
approved