login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020976
Expansion of 1/((1-8*x)*(1-9*x)*(1-10*x)).
1
1, 27, 487, 7335, 99631, 1265607, 15341887, 179688375, 2050086511, 22913907687, 251930201887, 2733012078615, 29322230800591, 311701053949767, 3287717299503487, 34448718207176055, 358912563957741871
OFFSET
0,2
FORMULA
If we define f(m,j,x)=sum(binomial(m,k)*stirling2(k,j)*x^(m-k),k=j..m) then a(n-2)=f(n,2,8), (n>=2). - Milan Janjic, Apr 26 2009
From Harvey P. Dale, Oct 25 2011: (Start)
a(0) = 1, a(1) = 27, a(2) = 487, a(n) = 27*a(n-1)-242*a(n-2)+720*a(n-3).
a(n) = 2^(2+3*(n+1))+2^(n+1)*5^(2+n)-9^(2+n). (End)
MAPLE
a:=seq(2^(2+3*(n+1))+2^(n+1)*5^(2+n)-9^(2+n), n=0..16); # Muniru A Asiru, Feb 10 2018
MATHEMATICA
CoefficientList[Series[1/((1-8x)(1-9x)(1-10x)), {x, 0, 20}], x] (* or *)
LinearRecurrence[{27, -242, 720}, {1, 27, 487}, 20] (* or *)
Table[2^(3n+2)+ 2^n 5^(n+1)- 9^(n+1), {n, 20}] (* Harvey P. Dale, Oct 25 2011 *)
PROG
(Magma) [2^(2+3*(n+1))+2^(n+1)*5^(n+2)-9^(n+2): n in [0..30]]; // Vincenzo Librandi, Oct 26 2011
(PARI) x='x+O('x^30); Vec(1/((1-8*x)*(1-9*x)*(1-10*x))) \\ G. C. Greubel, Feb 09 2018
(GAP) a:=[1, 27, 487];; for n in [4..17] do a[n]:=27*a[n-1]-242*a[n-2]+720*a[n-3]; od; # Muniru A Asiru, Feb 10 2018
CROSSREFS
Sequence in context: A024346 A025983 A081139 * A024114 A025982 A042408
KEYWORD
nonn,easy
EXTENSIONS
Typo in formula fixed by Vincenzo Librandi, Oct 26 2011
STATUS
approved