Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Mar 25 2022 09:13:49
%S 1,-22,198,-924,2310,-2772,924,264,198,220,308,504,924,1848,3960,8976,
%T 21318,52668,134596,354200,956340,2641320,7443720,21360240,62300700,
%U 184410072,553230216,1680180656,5160554872,16015515120,50181947376,158639704608,505664058438
%N Expansion of (1-4*x)^(11/2).
%H G. C. Greubel, <a href="/A020923/b020923.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) = (10395/64)*4^n*Gamma(-11/2+n)/(sqrt(Pi)*Gamma(1+n)). - _Peter Luschny_, Dec 14 2015
%F D-finite with recurrence: n*a(n) +2*(-2*n+13)*a(n-1)=0. - _R. J. Mathar_, Jan 17 2020
%F From _Amiram Eldar_, Mar 25 2022: (Start)
%F a(n) = (-4)^n*binomial(11/2, n).
%F Sum_{n>=0} 1/a(n) = 1124/1155 + 26*Pi/(3^8*sqrt(3)).
%F Sum_{n>=0} (-1)^n/a(n) = 56972276/54140625 - 52*log(phi)/(5^7*sqrt(5)), where phi is the golden ratio (A001622). (End)
%p A002423 := n -> (10395/64)*4^n*GAMMA(-11/2+n)/(sqrt(Pi)*GAMMA(1+n)):
%p seq(A002423(n),n=0..28); # _Peter Luschny_, Dec 14 2015
%t CoefficientList[Series[(1 - 4*x)^(11/2), {x,0,50}], x] (* _G. C. Greubel_, Feb 15 2017 *)
%o (PARI) my(x='x+O('x^50)); Vec((1-4*x)^(11/2)) \\ _G. C. Greubel_, Feb 15 2017
%Y Cf. A001622, A002420, A002421, A002422, A002423, A002424.
%K sign
%O 0,2
%A _N. J. A. Sloane_