Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Dec 20 2019 14:52:43
%S 6,21,26,81,129,349,650,1614,3281,7772,16565,38265,83635,190656,
%T 422266,955967,2131986,4809229,10764221,24235939,54347662,122246248,
%U 274396853,616899656,1385407029
%N Number of strong elementary edge-subgraphs in Moebius ladder M_n.
%H J. P. McSorley, <a href="http://dx.doi.org/10.1016/S0012-365X(97)00086-1">Counting structures in the Moebius ladder</a>, Discrete Math., 184 (1998), 137-164.
%F Conjectures from _Colin Barker_, Dec 20 2019: (Start)
%F G.f.: x^2*(6 + 9*x - 46*x^2 - 22*x^3 + 74*x^4 + 16*x^5 - 38*x^6 - 3*x^7 + 6*x^8) / ((1 - x)*(1 + x)*(1 + x - x^2)*(1 - x - x^2)*(1 - 2*x - x^2 + x^3)).
%F a(n) = 2*a(n-1) + 5*a(n-2) - 9*a(n-3) - 8*a(n-4) + 12*a(n-5) + 5*a(n-6) - 6*a(n-7) - a(n-8) + a(n-9) for n>10.
%F (End)
%K nonn,more
%O 2,1
%A _N. J. A. Sloane_
%E a(6)-a(26) from _Sean A. Irvine_, May 01 2019