login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (undirected) Hamiltonian paths in n-Moebius ladder.
1

%I #30 May 07 2019 15:09:35

%S 0,4,12,36,72,140,228,364,528,756,1020,1364,1752,2236,2772,3420,4128,

%T 4964,5868,6916,8040,9324,10692,12236,13872,15700,17628,19764,22008,

%U 24476,27060,29884,32832,36036,39372

%N Number of (undirected) Hamiltonian paths in n-Moebius ladder.

%H Vincenzo Librandi, <a href="/A020875/b020875.txt">Table of n, a(n) for n = 0..1000</a>

%H J. P. McSorley, <a href="https://doi.org/10.1016/S0012-365X(97)00086-1">Counting structures in the Möbius ladder</a>, Discrete Math., 184 (1998), 137-164.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HamiltonianPath.html">Hamiltonian Path</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MoebiusLadder.html">Möbius Ladder</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,-4,1,2,-1).

%F If n is even, a(n) = n^3+2*n, else a(n) = n^3+3*n.

%F G.f.: 4*x*(x^2+1)*(x^2+x+1) / ((x-1)^4*(x+1)^2). - _Colin Barker_, Apr 05 2013

%p A020875 := proc(n) if n mod 2 = 0 then return n^3+2*n; else return n^3+3*n; end if end proc: seq(A020875(n), n=0..50);

%t CoefficientList[Series[4 x (x^2 + 1) (x^2 + x + 1)/((x - 1)^4 (x + 1)^2), {x, 0, 50}], x] (* _Vincenzo Librandi_, Oct 16 2013 *)

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_.