login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Pisot sequences E(4,8), L(4,8), P(4,8), T(4,8).
11

%I #44 Sep 08 2022 08:44:45

%S 4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768,65536,

%T 131072,262144,524288,1048576,2097152,4194304,8388608,16777216,

%U 33554432,67108864,134217728,268435456,536870912,1073741824,2147483648,4294967296,8589934592

%N Pisot sequences E(4,8), L(4,8), P(4,8), T(4,8).

%C Subsequence of A051916. - _Reinhard Zumkeller_, Mar 20 2010

%H Vincenzo Librandi, <a href="/A020707/b020707.txt">Table of n, a(n) for n = 0..238</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H <a href="/index/Di#divseq">Index to divisibility sequences</a>

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (2).

%F a(n) = 2^(n+2).

%F a(n) = 2*a(n-1).

%F G.f.: 4/(1-2*x). - _Philippe Deléham_, Nov 23 2008

%F E.g.f.: 4*exp(2*x). - _Stefano Spezia_, May 15 2021

%t 2^(Range[0, 50] + 2) (* _Vladimir Joseph Stephan Orlovsky_, Jun 09 2011 *)

%o (Magma) [2^(n+2): n in [0..40]]; // _Vincenzo Librandi_, Apr 28 2011

%o (PARI) a(n)=4<<n \\ _Charles R Greathouse IV_, Apr 08 2012

%Y Subsequence of A000079. See A008776 for definitions of Pisot sequences.

%Y Cf. A051916.

%K nonn,easy

%O 0,1

%A _David W. Wilson_